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General Relations Between P2, 1P3, and Offsetsin
Differential Circuits and the Effects of Feedback

A. A. Abidi, Fellow, IEEE

Abstract—In the presence of offsets, all balanced circuits show
an apparent second-order distortion. Differential feedback lowers
third-order nonlinearity and also these second-order effects. The
results are important for the baseband circuits of zero-IF wire-
lessreceiver s, which often need avery large second-or der inter cept
point. It isshown that a published analysisof distortion in abipolar
double-balanced mixer is a special case of these general relation-
ships.

|. INTRODUCTION

NCREASINGLY, the importance of second-order distortion

is being recognized as a limitation in the baseband circuits
of wireless receivers that downconvert the channel of interest to
zero |F. Detection of interfererslying anywherein the passband
by second-order nonlinearity creates spectral components at or
close to dc, possibly overwhelming the channel of interest that
has been downconverted to zero IF. The main way to combat
this effect is with balanced circuits in the baseband. Ideally,
when abalanced circuit isstimul ated and sensed differentially, it
displays no second-order distortion. However, offsets and mis-
matches in a practical circuit cause small imbalances, which
lead to a proportional second-order nonlinearity.

Coffing and Main [1] have analyzed this very effect in a
bipolar double-balanced mixer. The exponential -V charac-
teristic of the bipolar junction transistor simplifiestheir analysis
and leads to compact expressions for the second-order intercept
point (IP2). The question is. How does this analysis extend
to other baseband circuits such as fixed- and variable-gain
amplifiers and active filters? How is it different for MOS
circuits? The purpose of this paper isto show that all of Coffing
and Main’s results for the input transconductor portion of the
bipolar mixert are, in fact, specific instances of properties of
any balanced circuit that suffers from an offset.

II. BALANCED CIRCUITS SUBJECT TO OFFSETS
P2

Theinput—output characteristic of abalanced circuit with dif-
ferentia input and output consists only of odd-order terms[2]

3
Vous = @1 Vin + A3V, + . (o)
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1The analysis of the unequal mark—space ratio in the commutating transistors
is not considered here because we are interested in the time-invariant baseband
circuits that determine the IP2 of a zero-IF receiver.
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Fig. 1. Baanced nonlinear circuit stimulated with a differential input and
sensed differentialy at the output. Theinput-referred offset voltage imbalances
the stimulus.

The first coefficient a; is the small-signal voltage gain. Asso-
ciated with this is an input-referred voltage intercept point for
third-order two-tone intermodulation [3]

4a
Vips = 4/ Ton L )
as

Now suppose that there is a fixed offset voltage in this circuit
arising from, say, threshold voltage mismatch in FETs or un-
balanced bias currentsin two sides of asymmetrical circuit. All
internal offsets may be captured by a single equivalent offset
voltage source v, in series with one of the differential input
terminals [2] (Fig. 1). In the presence of this offset, the differ-
ential output is

Vout — al(vin + Uos) + a3(vin + UOS)g +-

= (al + 3agvgs) Vip + ++° + 3agvosv?n 4+, 3

The second term implies second-order intermodul ation, charac-
terized by an intercept point that depends on the offset and also
on Viips asfollows:

2 2
Vi, = 4 + 3azv,s  Viips
P2 = = + v
3a?ﬂ/os 4vos

~ V?IP?) . (4)

0os —
Qvog

The second-order distortion arises from third-order terms be-
cause of third-order intermodulation between an input tone and
the “dc ton€” due to the offset (Fig. 2). To lower second-order
intermodulation, i.e., to raise Viip2, Offset should be lowered
and Vi1p3 should beraised. In general, offset voltageislowered
inversely with the square root of the surface area occupied by
the components comprising the circuit [4]. In addition, offset at
the output of a circuit that is directly coupled into a following
circuit degradesthe | P2 of thelatter. Therefore, in the receiver’s
baseband or final IF section, the propagation of amplified offset
from stage to stage should be suppressed by either inserting se-
riescapacitorsinthesignal path, or by using dc feedback around
each stage.

Itiswell known that feedback linearizesacircuit [2], [5]. Ina
balanced circuit, feedback raises the third-order intercept point
(IP3), and, therefore, P2, as we will now show.

0018-9480/03$17.00 © 2003 IEEE



ABIDI: GENERAL RELATIONS BETWEEN IP2, IP3, AND OFFSETS IN DIFFERENTIAL CIRCUITS AND EFFECTS OF FEEDBACK

.. 0 + +éf

Fig. 2. Third-order intermodulation between an input tone at f and dc offset
creates a component at the second harmonic. This appears like a second-order
effect.
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Fig. 3. Baanced nonlinear circuit with feedback applied. The feedback
element is assumed linear.

Raising 1P3 and 1P2 Wth Negative Feedback

Suppose feedback with afactor 3 isapplied around the circuit
(Fig. 3). We assumethat the feedback element isperfectly linear.
Feedback will now try to correct the nonlinearity, and classic
analysis[6],2 [5], [7] shows that the input—output relation after
feedback is

a
1+

as 3
Vg T e (5)
(1+a3)*
The term a3 is the small-signal feedback loop gain. Invoking

(2), we see that feedback modifies the IP3 of the circuit as fol-
lows:

Vout =

1
03 Vin +

Virps(after f/b) = Virps(before £/b) x (14 a13)*2. (6)

Owing to the suppression of third-order nonlinearity and for
the same input-referred offset, feedback, according to (4), also
raises the IP2 as follows:

Vnpg(aﬁer f/b) = Van(bEfOl'e f/b) X (1 + a1/3)3. @)

This is a powerful method to raise IP2 in baseband or low-fre-
quency parts of areceiver, where op-amp-like circuits can offer
large loop gains.

Often the baseband circuits must amplify the receiver input
to some prescribed full-scale output level, for instance, to the
full-scale of an A/D converter. Assuming that distortion in the
last stage of the baseband chain dominates, we should properly
compare the output intercept point before and after feedback.
Feedback still brings improvement because it follows from (6)
and (7) that

Vorpa(after f/b) = Vorps(before f/b) x (1 + a1 3)"/?
Vom(after f/b) = VOIPQ(bEfOI'e f/b) X (1 + a1/3)2. (8)

2Professor R. G. Meyer, University of Caiforniaat Berkeley, pointed out this
early reference.
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Validation of General Results

These genera results may be validated against Coffing and
Main’'sanalysis of the bipolar differentia pair with and without
degeneration. Although they have derived an expression for
Virpe in the same terms as (4), it is as a preamble to the
specific analysis of the circuit; they also do not bring out the
relationship to Virps.

A bipolar differential pair biased by atail current 27 obeys
the following input—output relation [2]:

. Vin
i, = 21 tanh <2VT> 9
where V7 isthethermal voltage £7°/q. Thefirst- and third-order
coefficients of a Taylor-series expansion of the right-hand side
may be found in various ways. We find them by evaluating suc-
cessive derivatives of the relation in (9) at the bias point, from
which it follows that for an input-referred offset voltage v,

27 21 (2Vr)?
_— = — V =
oy as 3(2VT)3 = VIIp2 Von

a; =

and

Virps = 4Vr. (10)

Asan aside, we notethat Vip3 of adifferential pairis+/2 larger
than the well-known Vips = 2./2Vr of a common-emitter
bipolar transistor amplifier [3], [7], which means that, in some
respects, connecting two transistors into a differential pair cre-
ates a more linear circuit.

Degeneration of thedifferential pair by adding linear resistors
Ry in series with each emitter introduces series feedback with
asmall-signal loop gain of g,, R [2], where g,,, = I/Vr isthe
small-signal transconductance of each transistor. It then follows
from the general result (7) that after degeneration

2Vr)? IRp\?
Virp2 = @Vr) <1 + _VE>
08 T

and from (6) that

3/2
! RE) . (11)

W =4Vr | 1+ —
P3 T<+VT

Coffing and Main have arrived at the same expression for Vip2,
but with a circuit-specific analysis.
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